A New Sesquiterpene Lactone from Scorzonera austriaca

Juan LI¹, Quan Xiang WU¹, Yan Ping SHI^{1,2}, Ying ZHU¹*

¹College of Chemistry and Chemical Engineering, Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

²Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

Abstract: A new gualanolide was isolated from the roots of *Scorzonera austriaca*. The structure was elucidated on the basis of spectral methods including 2D NMR.

Keywords: Scorzonera austriaca, compositae, sesquiterpene, guaianolide.

Scorzonera austriaca occurs in the northwestern mountainous regions in China. Its root is used as Tibetan traditional medicine for the treatment of many diseases, such as curing fever, carbuncle and mastitis¹. No phytochemical studies have been described for *S. austriaca*. In this paper, we report the structural elucidation of a new guaianolide isolated from the acetone extract of its roots.

Compound 1 afforded as colorless crystal, $[\alpha]_{D}^{26}$ - 41(c 0.18, CHCl₃). Its HR-ESIMS provided a quasi-molecular ion $[M+NH_4]^+$ at m/z 284.1859 (calcd. 284.1856), suggesting the molecular formula of $C_{15}H_{22}O_4$ and 5 degrees of unsaturation. The IR (KBr) bands were at 3377 (OH), 1758 (γ -lactone), 1640 cm⁻¹ (double bond). The ¹³C NMR and DEPT spectra contained 15 carbon signals. The ¹H NMR spectrum showed exocyclic double bond at δ 5.01, 4.98 (s, 1H, each); α -methyl- γ -lactone group at δ 4.41 (dd, 1H, J=11.2, 9.2 Hz, H-6), 1.80 (ddd, 1H, J=11.2, 9.2, 3.2 Hz, H-7), 1.44 (s, 3H, H-13) and methyl at 8 1.00 (d, 3H, J=7.2 Hz, H-15). All those data indicated a guaianolide-type skeleton with a terminal double bond². Its structure was further confirmed by HMBC correlations: H-2/C-1, C-3, C-4, C-5; H-4/C-1, C-2, C-5, C-15; H-5/C-1, C-4, C-6, C-7, C-15; H-14/C-1, C-9; H-15/C-3, C-4, C-5 and H-13/C-11, C-7. The signal for the bearing oxygen carbon at & 73.8 (C-3) correlated with H-1, H-2, H-4, H-15 and that at 74.5 (C-11) correlated with H-13 respectively, which indicated two hydroxyl groups located at C-3 and C-11 respectively. Finally, the relative stereochemistry of 1 was established by a selective NOE difference experiments (**Figure 1**). When H-6 was assigned as β -orientation, NOEs supported β -orientation of the hydroxyl group at C-3, the methyl groups at C-4 and C-11, while H-1, H-5, H-7 and the hydroxyl group at C-11 had α -orientation respectively. Thus, compound 1 was assigned as 3β , 11α -dihydroxy- 4β - methyl-guaia-10 (14)-en-12, 6α -oli-

^{*} E-mail: zhuy@lzu.edu.cn

Juan LI et al.

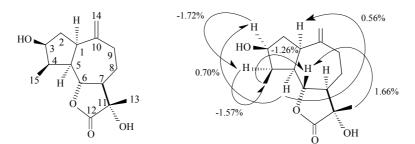


Figure 1 The structure and significant 1D NOE corrections of 1

Table 1 ¹H NMR (400 MHz), ¹³C NMR(75 MHz) data of 1 (CDCl₃, δ ppm, J Hz)

No.	$\delta_{\rm H}$	$\delta_{\rm C}$	DEPT	No.	$\delta_{\rm H}$	$\delta_{\rm C}$	DEPT
1	2.71 (m)	41.4	СН	9	2.68 (dd, 12.4, 8.0, 4.4, 1.8)	38.6	CH_2
2'	1.99 (ddd, 13.6, 10.8, 7.6)			10	-	148.1	С
3	4.24 (ddd, 12.4, 10.4, 6.8)	73.8	СН	11		74.5	С
4	2.35 (m)	40.5	СН	12	-	177.4	С
5	2.16 (ddd, 11.6, 11.2, 6.8)	47.3	СН	13	1.44 (s)	22.4	CH_3
6 7	4.4 1(dd, 11.2, 9.2) 1.80 (ddd, 11.2, 9.2, 3.2)	82.7 53.2	CH CH	14 14'	5.01 (brs) 4.98 (brs)	111.9	CH_2
8 8'	1.73 (m) 1.66 (m)	25.7	CH ₂	15	1.00 (d, 7.2)	8.3	CH_3

de^{3,4}. Analysis of ¹H-¹HCOSY and HMBC spectra allowed the assignments of the proton and carbon signals of 1 in Table 1.

Acknowledgment

This work was supported by Foundation for University Key Teacher by the Ministry of Education (2000-66) and the Natural Science Foundation of Gansu Province (No. ZS001-A25-002-Z).

References

- 1. North-Western Plateau Institute of Biology, Chinese Academy of Sciences, The Economic Flora of Qinghai (in Chinese), B. C. Gao (ed.), The Qinghai People' Press, Xining, 1987, 652.
- Z. X. Liao, S. L. Peng, Y. Z. Chen, L. S. Ding, *Chin. Chem. Lett.*, 2002, 13(8), 736.
 W. Kisiel, B. Barszcz, *Phytochemistry*, 1996, 43(4), 823.
- 4. R. X. Tan, J. Jakupovic, F. Bohlmann, Z. J. Jia, A. Schuster, Phytochemistry, 1990, 29(4), 1209.

Received 22 October, 2003